
TRANSPORTATION ANALYSIS SIMULATION SYSTEM
(TRANSIMS)

Version: TRANSIMS-LANL-1.0

VOLUME 2 – SOFTWARE
PART 2 – SELECTORS

28 May 1999

LA-UR 99-2575

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 2
LA-UR – 99-2574

COPYRIGHT, 1999, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA. THIS SOFTWARE WAS PRODUCED
UNDER A U.S. GOVERNMENT CONTRACT (W-7405-ENG-36) BY LOS ALAMOS NATIONAL LABORATORY,
WHICH IS OPERATED BY THE UNIVERSITY OF CALIFORNIA FOR THE U.S. DEPARTMENT OF ENERGY. THE U.S.
GOVERNMENT IS LICENSED TO USE, REPRODUCE, AND DISTRIBUTE THIS SOFTWARE. NEITHER THE
GOVERNMENT NOR THE UNIVERSITY MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY
LIABILITY OR RESPONSIBILITY FOR THE USE OF THIS SOFTWARE.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 3
LA-UR – 99-2574

TRANSIMS

Version: TRANSIMS-LANL-1.0

VOLUME 2 – SOFTWARE
PART 2 – SELECTORS

28 May 1999

LA-UR-99-2575

The following persons contributed to this document:
C. L. Barrett*

R. J. Beckman*
K. P. Berkbigler*

K. R. Bisset*
B. W. Bush*
S. Eubank*

J. M. Hurford*
G. Konjevod*

D. A. Kubicek*
M. V. Marathe*
J. D. Morgeson*

M. Rickert*
P. R. Romero*
L. L. Smith*

M. P. Speckman**
P. L. Speckman**

P. E. Stretz*
G. L. Thayer*

M. D. Williams*

* Los Alamos National Laboratory, Los Alamos, NM 87545
** National Institute of Statistical Sciences, Research Triangle Park, NC

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 4
LA-UR – 99-2574

Acknowledgments

This work was supported by the U. S. Department of Transportation (Assistant Secretary for
Transportation Policy, Federal Highway Administration, Federal Transit Administration), the U. S.
Environmental Protection Agency, and the U. S. Department of Energy as part of the Travel Model
Improvement Program.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 5
LA-UR – 99-2574

CONTENTS

1. OVERVIEW ...6

2. ALGORITHM ...10

3. USAGE ..13

4. TUTORIAL ..14

5. TROUBLESHOOTING ...15

6. ITERATION SCRIPT...16

6.1 OVERVIEW ... 16
6.2 ALGORITHM ... 16
6.3 USAGE ... 18
6.4 CONFIGURATION KEYS... 19
6.5 TROUBLESHOOTING ... 19

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 6
LA-UR – 99-2574

1. OVERVIEW

The process of iterative feedback is a key distinguishing feature of TRANSIMS. It first allows the
overall computational system to reflect learned behavior within the simulated population
represented (i.e., the ability of humans to learn from day-to-day experiences in order to avoid
congestion, etc.). It also provides a way to simulate intelligent responses to information that may
be provided ultimately by intelligent transportation systems technologies.

The Selector is the TRANSIMS framework component that controls the iterative process. A
typical TRANSIMS study involves repeated iteration between components such as the Activity
Generator, Route Planner, and Traffic Microsimulator. There is no single, standard selector
component, however, because different study designs involve different iteration schemes. A variety
of selectors have uses in different studies or other contexts. In this document, we will describe a
single, canonical selector. Figure 1 illustrates where the Selector resides within the TRANSIMS
framework.

Activity
Generator

filter, sort,
m

erge,
noise

reassign
travelers

Summary
Output

Traveler
Events

Activity Set

Route
Planner

Traffic Micro-
simulator

update

Plan Set
Iteration

Database

new activities

replan
travelers

m
erge/update

filter, sort,
m

erge,
noise

new plans update

filter, sort,
m

erge,
noisenew output

Synthetic
Population

Population
Synthesizer

selector

resimulate
travelers

roll back time, or pause

Selector
Statistics

update

update

Emissions
Estimator

Emissions
Inventory

filter, sort,
m

erge,
noise updatenew emissionsrecalculate

emissions

ar
ch

ive

Figure 1. Location of the Selector within a typical TRANSIMS experimental design.

The user can prepare an iteration script to control the whole process of iteration. The script uses
special control commands specifically developed for this iterating of TRANSIMS components. It
allows the user to filter results, run repeated iteration, establish stopping criteria, and perform a
host of other operations that make the analyst’s job less manpower intensive.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 7
LA-UR – 99-2574

During each iteration, the iteration script controlling the current study typically invokes a selector.
(The script might even use a different selector for each iteration in a study.) When a selector runs,
it usually will do the following:
• Read information about the travelers from the iteration database.
• Examine each traveler and decide whether to

- regenerate his/her activities using the activity generator,
- choose a new route between his/her existing activities using the Route Planner, or
- retain his/her existing activities and the planned route between them.

• Write the selections made for each traveler into data files that can be read by the Activity
Generator and/or Route Planner when they are executed.

• Summarize the selections made and the current state of the system into a selector statistics data
file.

Figure 2 illustrates a selector’s decision-making process.

select travelers
to resimulate

Iteration
Database

Selector
Statistics

Selection
Choices

extract statistics used
to decide how to
proceed with the

iteration

select travelers
to reassign

decide
whether to reassign,
replan, or resimulate

travelers

select travelers
to replan

Activity
Generator

Route
Planner

Traffic
Microsim.

select travelers
to resimulate

Figure 2. Typical Selector logic.

After the Selector completes the selection process for all of the travelers, the Activity Generator,
Route Planner, or Traffic Microsimulator runs to calculate the updated activity set, plan set, or
microsimulation output files, respectively, according to the decisions made by the Selector. The
iteration script will reinvoke a selector again at the start of the next iteration in the study. Figure 3
shows examples of four possible progressions, as determined by the Selector.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 8
LA-UR – 99-2574

Population

Activities

Plans

Traffic

Emissions

iteration number

1

2

3

4

75

6 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Population

Activities

Plans

Traffic

Emissions

1

2

3

4

75

6 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

iteration number

Population

Activities

Plans

Traffic

Emissions

13 14 15 16 17 18 19 20 21 22 23

iteration number

1

2

3

4

75

6 8

9

10

11

12

Population

Activities

Plans

Traffic

Emissions

5 10 11 12 20

iteration number

1

2 4 6 8 9 13 15 16 18 19 21 22

3 7 14 17 23

Figure 3. Four example iteration progressions.

The major input to the Selector is the iteration database. It contains a summary history of each
traveler’s attributes, expectations, and experiences during the iterations within a study. The
Selector uses these data items to make its selection decisions. Attributes represent quasi-static
information about travelers like their age, income, gender, or profession. Expectations encompass
information such as how long a traveler expects to travel between two of his/her activities based on
the route between them generated by the Route Planner. Experiences compose information
extracted from detailed Traffic Microsimulator output— for instance, the actual travel time realized
in the microsimulation between two activities. The analyst may choose which attribute,
expectation, and experience data reside in the iteration database for a particular study. These data
form the universe of information readily available to the Selector; additional data from activity
sets, plan sets, and microsimulation output might also be used by some selector implementations,
however. The right side of Figure 4 shows this data flow into the Selector.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 9
LA-UR – 99-2574

Iteration Database
� record of traveler iterations

within a study
� attributes representing

quasi-static information about
travelers

� expectations encompassing
planned activities, routes, and
times

� experiences comprising
information extracted from
detailed microsimulation
output

� analyst may customize
contents for a particular
study

Selector
Selector Statistics

� basic summary of choices
made

� how many travelers are being
reassigned activities or plans

� distributions of the difference
between expected and
experienced travel times for
various traveler populations

Selection Choices
� list of the travelers that will be

reassigned activities,
replanned, resimulated, etc.

� embodies the detailed
decisions of the Selector

Figure 4. Typical Selector data flow.

The Selector also has two principal outputs: selector statistics and selection choices. The selection
choices files simply list the travelers that will be reassigned activities, replanned, resimulated, etc.;
these files embody the detailed decisions of the Selector. The Selector statistics provide a basic
summary of the choices a selector makes, e.g., how many travelers are being re-planned,
distributions of the difference between expected travel times and experienced travel times for
various traveler populations, and the like. The left side of Figure 4 shows this data flow out from
the Selector.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 10
LA-UR – 99-2574

2. ALGORITHM

If the SEL_FILL_ITDB configuration key is set to true when the Selector is invoked, the Selector
first updates the contents of the iteration database using the latest population, activity, plan, and
traveler event data files generated by the Population Synthesizer, Activity Generator, Route
Planner, and Traffic Microsimulator, respectively— this is the merge/update function shown on the
right side of Figure 1. Table 1 summarizes the contents of the iteration database used by the
Selector described here.

Table 1. Description of iteration database fields.

Field Description Description Source of Data
TRAVID the ID of the traveler population file
HOUSEID the ID of the traveler’s household population file
TRIPID the ID of the traveler’s trip plan file
LEGID the ID of the trip’s leg plan file
DESIRED_ARRIVAL_TIME the desired arrival time (measured in fractional

hours) at the activity
activity file

DESIRED_ARRIVAL_TIME_UB the upper bound for desired arrival time
(measured in fractional hours) at the activity

activity file

DESIRED_ARRIVAL_TIME_A beta distribution parameter specified in the
activity file

activity file

DESIRED_ARRIVAL_TIME_B beta distribution parameter specified in the
activity file

activity file

EXPECTED_ARRIVAL_TIME the expected arrival time (measured in seconds
past midnight) at the activity

plan file

ACTUAL_ARRIVAL_TIME the actual arrival time (measured in seconds
past midnight) at the activity

traveler event file

NUM_STOPS the number of stops signs the traveler
encountered on this leg

traveler event file

TIME_STOPPED the number of seconds the traveler was stopped
in traffic on this leg

traveler event file

TOTAL_DISTANCE the total distance (measured in meters) traveled
on this leg

traveler event file

TOTAL_TIME the total time (measured in seconds) traveled
on this leg

traveler event file

GEOM_DISTANCE the straight-line (Euclidean) distance (measured
in meters) planned for travel on this leg

plan file

MODE_PREF the traveler’s mode preference for this leg
(same integers as in activity file)

activity file

EXPECTED_DURATION the expected duration (measured in seconds) of
the current leg

plan file

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 11
LA-UR – 99-2574

After the iteration database has been updated, the Selector builds a variety of cost functions:
namely,

• Duration cost:
expected

expectedactual
legtravelerduration T

TT
ic

−=)(, , where actualT is the actual travel time for

the trip as realized by the Traffic Microsimulator and expectedT is the expected travel time for

the leg as estimated by the Route Planner. This measures travel time “frustration.”

• Distance cost:
geometric

geometricactual
legtravelerdistance D

DD
ic

−=)(, , where actualD is the actual distance

traveled in the Traffic Microsimulator and geometricD is the point-to-point Euclidean distance

between the leg’s endpoints. This measures how far out of his or her way the traveler goes.

• Stopped cost:
actual

stopped
legtravelerstopped T

T
ic =)(, , where stoppedT is the time stopped in traffic and

actualT is the total travel time. This measures the fraction of the time a traveler spends waiting.

• Late cost: actualdesiredlegtravelerlate AAic −=)(, , where desiredA is the arrival time desired by the

Activity Generator and actualA is the actual arrival time realized by the Traffic Microsimulator.
This measures how late the traveler is for his or her activity.

• Effective speed cost:
actual

geometric
legtravelerspeed T

D
ic =)(, , where geometricD is the point-to-point

Euclidean distance between the leg’s endpoints and actualT is the total travel time. This
measures the traveler’s effective speed through the network.

Once those cost functions have been built, they are sampled to determine what actions are taken for
which travelers: namely,
• Select the fraction reassignf of the travelers uniformly at random,)(,legtravelerdistance ic , for

reassignment of activity locations by the activity generator, followed by rerouting by the Route
Planner.

• Select the fraction remodef of the travelers with the highest effective speed costs,

)(,legtravelerspeed ic , for reassignment of mode preferences by the activity generator, followed by

rerouting by the Route Planner.
• Select the fraction retimef of travelers with the highest late costs,)(,legtravelerlate ic , for

reassignment of activity times by the Activity Generator, followed by rerouting by the Route
Planner.

• Select the fraction reroutef of travelers with the highest duration costs,)(,legtravelerduration ic , for

rerouting by the Route Planner.

The end result of the selection choices is a pair of files containing the list of travelers whose
activities must be regenerated (along with what type of regeneration must be done) and the list of
travelers whose routes must be replanned.

The iteration script supplied with the Selector ties the iteration process together by running the
components, merging files, and creating indexes as needed, and archiving output data into iteration
specific directories.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 12
LA-UR – 99-2574

3. USAGE

The Selector takes a single command-line argument, the TRANSIMS configuration file. Table 2
lists the configuration parameters that the Selector uses: these are the various reassignment and
rerouting thresholds discussed in the previous section and the location of the iteration database file.

Table 2. Selector configuration file parameters.

Configuration Key Description
SEL_REROUTE_FRAC

reroutef
SEL_RETIME_FRAC

retimef
SEL_REASSIGN_FRAC

reassignf
SEL_REMODEFRAC

remodef
SEL_FRUSTRATION_THRESH

remodef
SEL_ITDB_FILE the iteration database file
SEL_FILL_ITDB whether to update the iteration database
ACTIVITY_FILE (index of) activities
PLAN_FILE (index of) plans
OUT_EVENT_NAME_1 traveler event data created by microsimulation
OUT_DIRECTORY directory containing output data created by the simulation
ACT_FEEDBACK_FILE traveler ids and generator command output
ROUTER_HOUSEHOLD_FILE household ids which need to be rerouted (includes all households with

travelers included in the ACT_FEEDBACK_FILE)

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 13
LA-UR – 99-2574

4. TUTORIAL

% $TRANSIMS_HOME/bin/Selector config > selector.log

After this runs, it will have updated ITDB_FILE, if requested. It will also have generated the
ACT_FEEDBACK_FILE and the ROUTER_HOUSEHOLD_FILE. The standard output contains
a cryptic debugging message at the top, followed by value for all of the cost functions. Each cost
function’s values are separated by a comment line beginning with a ‘#’ character, which offers a
brief reminder of what the cost function is.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 14
LA-UR – 99-2574

5. TROUBLESHOOTING

All of the simulation output files must exist, and the SEL_… configuration parameters must be set.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 15
LA-UR – 99-2574

6. ITERATION SCRIPT

6.1 Overview

The purpose of this script is to automate an iteration process. It . . .

• builds and archives the inputs (populations, vehicles, activities, and plans) for each iteration,

• builds the required indexes,

• runs the Traffic Microsimulator

• archives some output (currently animation binary files) from each iteration,

• appends to the iteration database summary statistics for each traveler after each iteration, and

• merges new inputs into previous inputs to prepare for the next iteration.

It can be used with a “clean slate,” in which none of the inputs are available, or with previously
prepared input files. It maintains separate input archives for different types of populations (e.g.,
mass transit, freight, transient, and “household population” or “pop”). Input data for each type can
be generated differently. For example, transit schedules can be parsed to generate transit driver
plans and vehicles, while the router is used to generate plans for members of the household
population.

6.2 Algorithm

For each population type, the script executes the following procedures, which are described in
more detail below:

1) Build a population

2) Locate a population

3) Build vehicles

4) Build Activities

5) Build Plans

The results of each of these procedures are placed in a subdirectory of the current working
directory named it.<n>, where <n> is the (zero-based) iteration number. This subdirectory is
further divided into a subdirectory for each different population type. For example, if the
configuration key PLAN_FILE is set to /home/transims/net_plans, then when the “pop”
population type plans are created on iteration 3, they are placed into the file it.3/pop/net_plans.

As each result is obtained, it is merged into an index in the “current” subdirectory, which is also
subdivided by population type. Thus, in the example above, the new plans would be merged into
the index in current/pop/net_plans. These indexes contain all of the data from previous iterations
that has not been overridden, whereas the ones in it.<n> contain only the data generated on the

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 16
LA-UR – 99-2574

most recent iteration. For efficiency, the plan indexes in the “current” subdirectory are also
truncated to the start and end times of the simulation.

Finally, a link is formed between a file in the run directory (current working directory) and the
corresponding population-type specific index in the “current” directory. In the example above,
net_plans.trv.idx would become a link to the file current/pop/plans.trv.idx. This is done so that
each procedure will have available to it the most recent results of all the previous procedures for
that population type.

After every population type has been considered, plan and vehicle indexes are constructed using the
indexes in each of the “current” subdirectory’s population types. These contain all of the data
from every iteration (except that which has been overridden by later iterations) from all the
population types. These indexes are the ones used by the Traffic Microsimulator.

After the Traffic Microsimulator runs, the Selector builds the iteration database and selects
travelers for activity regeneration and rerouting. On succeeding iterations, the Route Planner and
Activity Generator will use the feedback files to update only the required travelers. Also, the
router will use the OUT_SUMMARY_NAME_1 file created in the previous iteration to obtain link
travel time delays.

6.2.1 Build a Population

If necessary (but not for transit), the BuildPop procedure calls the Popgen executable after
removing the POP_BASELINE_FILE for each population type. It moves the
POP_BASELINE_FILE it creates into the appropriate iteration’s population type subdirectory.
Since Popgen is called to build an entire population, not just to modify certain members, the new
population file overwrites (via a UNIX link) any previous population in the “current” population
type subdirectory, rather than merging into it. A link is also formed between the file in “current”
and POP_BASELINE_FILE.

6.2.2 Locate a Population

If necessary (but not for transit), the LocPop procedure calls the Poploc executable after removing
the POP_LOCATED_FILE for each population type. It moves the POP_LOCATED_FILE it
creates into the appropriate iteration’s population type subdirectory. Since Poploc is called to
locate an entire population, not just to modify certain members, the new population file overwrites
(via a UNIX link) any previous population in the “current” population type subdirectory, rather
than merging into it. A link is also formed between the file in “current” and
POP_LOCATED_FILE.

6.2.3 Build Vehicles

If necessary, for the “pop” population type, the BuildVehicles procedure calls the Vehgen
executable. For the “transit” population type, it does nothing, because vehicles will be generated
when the transit driver plans are built.

First, the script removes VEHICLE_FILE and its associated indexes, then it generates vehicles. It
creates the associated indexes and moves them all to the iteration directory in the appropriate
population type subdirectory. Then, since it has generated a complete set of vehicles and not just
an update to the previous set, it replaces the vehicle file and indexes in the “current” subdirectory

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 17
LA-UR – 99-2574

with those in the iteration subdirectory and links VEHICLE file to the ones in the “current”
subdirectory.

6.2.4 Build Activities

On the first iteration, this procedure runs the Activity Generator, which processes the entire
population file and creates activities in the ACT_FULL_OUTPUT file. On subsequent iterations,
it runs the LANL regenerator, which processes only those activities listed in
ACT_FEEDBACK_FILE and creates activities in the ACT_PARTIAL_OUTPUT file.

The script moves the output and the traveler and household indexes into the appropriate iteration
and population type subdirectory, and merges them into the “current” population type subdirectory.
Finally, these indexes are linked into indexes for the file specified by ACTIVITY_FILE.

6.2.5 Build Plans

Based on the activity file and vehicle file generated in earlier steps, the Route Planner creates a
plan for each traveler on the first iteration. On subsequent iterations, the file specified by
ROUTER_HOUSEHOLD_FILE may exist. If so, the Route Planner will generate routes only for
the households indicated in that file.

The Route Planner uses free speed delays on links by default. If the file specified by
OUT_DIRECTORY and OUT_SUMMARY_NAME_1 exists, the link-specific time delays given
in that file are used instead.

After generating the plan file (which will be temporarily placed in PLAN_FILE), the script moves
the plan file and a traveler index to the iteration subdirectory, in the appropriate population type
subdirectory. The time-sorted index is not created at this point, because it will not be handled
properly by MergeIndices. The traveler index is merged into the one in the “current” directory for
the appropriate population type. The resulting time index is linked to an index for the file specified
by PLAN_FILE.

6.3 Usage
% /bin/sh expt.sh <config-file>

where <config-file> is the absolute (full) pathname of a configuration file.

TRANSIMS-LANL-1.0 – Software/Selectors – May 1999 Page 18
LA-UR – 99-2574

6.4 Configuration Keys

Configuration Key Description
BASELINE_FILE
LOCATED_FILE
VEHICLE_FILE
ACTIVITY_FILE
PLAN_FILE

These configuration keys specify base names for the indicated files that are used
as starting points for iteration 0. For each of the population types “pop” and
“transit”, the corresponding type’s string is added to the base file name. If the
resulting file exists, it will be used. Otherwise, the script will call an appropriate
tool to generate it. The last component of the path in each of these values will be
used as a filename for the corresponding file in the run directory. A new
configuration file will be generated in the run directory with the new file name
information overriding the old values. For example, suppose PLAN_FILE is
/home/transims/plans. Then, on the 0th iteration, the script will look for
/home/transims/plans.transit. If it exists, it will be used for the transit driver
plans. If not, another executable will be called to generate the plans. This
executable will not update /home/transims/plans.transit. Next, the script will
look for /home/transims/plans.pop. If it does not exist, the Route Planner will be
called to generate a plan set. The Traffic Microsimulator will look for the file
plans in the run directory. This file, generated by the iteration script, will
contain all of the plans in both current/pop/plans and current/transit/plans. This
allows the re-use of a particular starting point in an experiment, even if it is very
expensive to construct all the files that make up the starting point.

EXPT_NUM_ITER The number of iterations to perform. Default = 1.

6.5 Troubleshooting

The last component of every file name must be unique or files will be overwritten!

